HIKARI:
Paving the Way towards
High Speed Air Transport

Emmanuel Blanvillain, Airbus Group Innovations

02.06.2016
SUNJET 2 Forum
ILA Berlin, Germany
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013), METI and MEXT.
Project Objectives

- Exchange, benchmark and understand
 Build on momentum from high speed projects in Europe and Japan

- Make visions converge into
 Joint design guidelines and technology roadmaps

- Perform technology studies in 3 key areas:
 environment, propulsion, thermal analysis

Duration: February 2013 - January 2015

Budget: ~4M€ of activity
The market is sufficiently large to allow sustainable airline operations (>200 a/c in 100pax configuration), provided that HS flights are fed by connecting network and at affordable ticket prices (<= twice BC price).

- Range: 13 500km, investigate opportunities for supersonic overland.

- Mach 5 is the best compromise speed.

- H2 but ... LHC/CH4

- Passenger Capacity: step-wise growth small for 2030+ → larger 2050+ to accompany market growth and master risks.
Meeting the market demand

by JADC & Airbus

Market Equilibrium

- Nb Aircraft (2032):
 - ~200 a/c

- Market Share:
 - ~20% of premium pax

- Ticket Price:
 - ~x2 BC fare

- Ex: 100 pax a/c

Commercial Requirements
Range and Sonic Boom Strategy

- **Range**: to capture 90% of the market, the required range is the following
 - **11500 km** [6200nm] with no ERF (Extended Range Factor)
 - **13500 km** [7300nm] when including the ERF

- **ERF**: Extended Range Factor (detour)
 - Not a big issue for time savings
 - Issue for fuel burn and vehicle sizing

- **Recommendation**
 - Investigate **low sonic boom** option to suppress the ERF

02.06.2016, Berlin
Speed

Commercial Requirements

- **Speed**
 - **Mach 5** provides huge time savings against subsonic flight
 - No large time benefit beyond this
 - **Mach 5** provides significant cruise phases (>40%) even for medium range and low acceleration

- **Technology Impact**
 - Propulsion options at Mach 5 are larger: ramjet / PCTJ
 - Materials might be simpler / cheaper
 - More test facilities available

<table>
<thead>
<tr>
<th>Mission</th>
<th>Delta from Subsonic to Mach 5</th>
<th>Delta from Mach 5 to Mach 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 000 km</td>
<td>10.3 hours</td>
<td>0.5 hour</td>
</tr>
<tr>
<td>14 000 km</td>
<td>13.2 hours</td>
<td>0.7 hour</td>
</tr>
</tbody>
</table>

02.06.2016, Berlin
Passenger Capacity: Step wise approach

2030-2035
- Business Jet size
- 10 passengers
- to initiate the business, as “niche” market first

2040-2045
- Small airliner size
- 100 passengers
- to grow the market, with more ambitious technologies (leading to longer range and cheaper tickets)

2055+
- Large airliner size
- 300 passengers
- to capture market growth and progressively develop towards a “mass market”
Main HIKARI Roadmap including Tech. Dev. Roadmap

<table>
<thead>
<tr>
<th>2015</th>
<th>2025</th>
<th>2035</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Phase 3</td>
<td>MS1</td>
</tr>
<tr>
<td>System Studies Feeding Tech. Dev.</td>
<td>FS Vehicle Requirements</td>
<td>FS Vehicle Definition / Project Development</td>
<td>MS2</td>
</tr>
<tr>
<td>Mission & Conceptual Vehicle Studies</td>
<td>TRL 6 Phasing of Technology Development Roadmap</td>
<td>Reduced Size A/C Demo</td>
<td>MS3</td>
</tr>
<tr>
<td>Airborne Subsystem Demonstration Roadmap</td>
<td>MS4 FS Prototype Production & Verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Based Subsystem Demo. Roadmap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRL 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propulsion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety / Operations / Social</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities / Tools / Capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synergies with Other Areas (Spin-Offs)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starting Dates of Technology Streams Vary

02.06.2016, Berlin
Synergies and short-medium term benefits to other industries

<table>
<thead>
<tr>
<th>Synergetic topic</th>
<th>Short/Mid-Term application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive H2 production and use, incl. tanks</td>
<td>Ground transportation, subsonic aviation (propulsion / fuel cell), space launchers</td>
</tr>
<tr>
<td>Thermal and energy optimization method</td>
<td>More electric subsonic aviation, ground transportation...</td>
</tr>
<tr>
<td>(+ components: lightweight heat exchangers)</td>
<td></td>
</tr>
<tr>
<td>High temperature lightweight materials</td>
<td>Subsonic aircraft engines, space re-entry vehicles, space propulsion,</td>
</tr>
<tr>
<td>Atmospheric and climate modelling</td>
<td>Subsonic flights : polar trajectories, business jets...</td>
</tr>
<tr>
<td>Design methods and tools for highly complex and integrated vehicles</td>
<td>Aerospace vehicle design...</td>
</tr>
<tr>
<td>Design Rules evolution to allow high performance vehicles (single pilot...)**</td>
<td>Subsonic aircraft, sub-orbital vehicles</td>
</tr>
</tbody>
</table>
Added Value of EU-JAPAN cooperation

- **PARTNERSHIP**
 - Getting to know each other (people / ways of working)
 - Build trust for long term partnership

- **DISSEMINATION**
 - Increase awareness of hypersonic transport to a worldwide scientific and deciders community

- **TECHNICAL**
 - Parallel independent analyses allowed key findings in the market research (role of connecting network)
 - Complementary skills allowed to cover full perimeter of activities (ex: PCTJ in Japan, thermal analysis in EU)
 - Convergence of views on single EU-JAPAN vision towards hypersonic flight and common technology roadmaps to achieve this goal

The team has identified a joint way forward and is ready to initiate HIKARI 2
Thank You!

Any question
http://www.hikari-project.eu
http://www.euronews.com/2015/03/02/hypersonic-airlines/
This document and all information contained herein is the sole property of the HIKARI Consortium or the company referred to in the slides. It may contain information subject to Intellectual Property Rights. No Intellectual Property Rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the written consent of the author(s). The dissemination and confidentiality rules as defined in the Consortium agreement apply to this document.

The statements made herein do not necessarily have the consent or agreement of the HIKARI consortium and represent the opinion and findings of the author(s).

All rights reserved.

The research leading to these results is being funded by the European Commission Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no 313987, the METI (Ministry of Economy, Trade and Industry) and other concerned Japanese authorities under the 7th Framework for Research and Technical Development.
Recommendations on the Way Forward

- Develop a joint design following the HIKARI Guidelines, driven by a chief engineer and a collaborative team.

- Develop critical technologies identified in the HIKARI roadmap:
 - Thermal and energy system management
 - Low noise and low sonic boom
 - Propulsion: PCTJ, turbo ramjet: investigate and down select
 - High temp. lightweight materials

- Proceed with Joint demonstrators following the HIKARI roadmap.